Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Clin Genet ; 105(5): 584-586, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38454547

RESUMO

A female proband and her affected niece are homozygous for a novel frameshift variant of CLPP. The proband was diagnosed with severe Perrault syndrome encompassing hearing loss, primary ovarian insufficiency, abnormal brain white matter and developmental delay.


Assuntos
Disgenesia Gonadal 46 XX , Perda Auditiva Neurossensorial , Feminino , Humanos , Disgenesia Gonadal 46 XX/complicações , Perda Auditiva Neurossensorial/diagnóstico , Homozigoto , Linhagem
2.
BMJ Case Rep ; 17(3)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553020

RESUMO

A female, term neonate, born via vaginal delivery to a G5P1D1A3 hypothyroid mother with a history of an elder sibling being homozygous for HSD17B4 mutation, diagnosed while working up his progressive neurological disorder and succumbing to the same. The family screening revealed that both parents were heterozygous carriers of the same mutation in the gene HSD17B4 After genetic counselling, amniocentesis revealed the fetus to be having homozygosity for the same mutation. In view of precious pregnancy, normal antenatal scans and investigations, the pregnancy was continued, and baby was born with a birth weight of 2.65 kg and had a smooth perinatal transition. Parents were counselled regarding the course of the illness, possible complications and the need for regular follow-up. Ultrasound of the abdomen, pelvis and head was normal in the neonatal period. She was vaccinated as per the national schedule and gaining weight normally.


Assuntos
Disgenesia Gonadal 46 XX , Perda Auditiva Neurossensorial , Recém-Nascido , Humanos , Feminino , Gravidez , Idoso , Aconselhamento Genético , Perda Auditiva Neurossensorial/genética , Disgenesia Gonadal 46 XX/genética , Mutação
3.
Stem Cell Res ; 75: 103318, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295749

RESUMO

We generated PUMCi005-A, an induced pluripotent stem cell (iPSC) line, from dermal fibroblasts of a 32-year-old female Perrault syndrome patient with double heterozygous (794 G > A and 1181 G > A) mutations in the TWNK gene using Sendai viral delivery of OCT4, SOX2, KLF4, and c-MYC. The PUMCi005-A iPSC line carried the TWNK mutations, displayed typical iPSC morphology, expressed pluripotent stem cell markers, did not have integration of Sendai virus, and exhibited a normal karyotype and differentiation into three germ layers.


Assuntos
Disgenesia Gonadal 46 XX , Perda Auditiva Neurossensorial , Células-Tronco Pluripotentes Induzidas , Feminino , Humanos , Adulto , Células-Tronco Pluripotentes Induzidas/metabolismo , Fator 4 Semelhante a Kruppel , Perda Auditiva Neurossensorial/metabolismo , Disgenesia Gonadal 46 XX/metabolismo , Diferenciação Celular/genética , Vírus Sendai/genética , Mutação/genética , Fibroblastos/metabolismo
4.
Hum Genet ; 142(7): 879-907, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37148394

RESUMO

Premature ovarian insufficiency (POI) is a common cause of infertility in women, characterised by amenorrhea and elevated FSH under the age of 40 years. In some cases, POI is syndromic in association with other features such as sensorineural hearing loss in Perrault syndrome. POI is a heterogeneous disease with over 80 causative genes known so far; however, these explain only a minority of cases. Using whole-exome sequencing (WES), we identified a MRPL50 homozygous missense variant (c.335T > A; p.Val112Asp) shared by twin sisters presenting with POI, bilateral high-frequency sensorineural hearing loss, kidney and heart dysfunction. MRPL50 encodes a component of the large subunit of the mitochondrial ribosome. Using quantitative proteomics and western blot analysis on patient fibroblasts, we demonstrated a loss of MRPL50 protein and an associated destabilisation of the large subunit of the mitochondrial ribosome whilst the small subunit was preserved. The mitochondrial ribosome is responsible for the translation of subunits of the mitochondrial oxidative phosphorylation machinery, and we found patient fibroblasts have a mild but significant decrease in the abundance of mitochondrial complex I. These data support a biochemical phenotype associated with MRPL50 variants. We validated the association of MRPL50 with the clinical phenotype by knockdown/knockout of mRpL50 in Drosophila, which resulted abnormal ovarian development. In conclusion, we have shown that a MRPL50 missense variant destabilises the mitochondrial ribosome, leading to oxidative phosphorylation deficiency and syndromic POI, highlighting the importance of mitochondrial support in ovarian development and function.


Assuntos
Disgenesia Gonadal 46 XX , Perda Auditiva Neurossensorial , Insuficiência Ovariana Primária , Feminino , Humanos , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/genética , Mitocôndrias/genética , Mutação de Sentido Incorreto , Insuficiência Ovariana Primária/genética , Animais , Drosophila melanogaster
6.
Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi ; 58(12): 1191-1197, 2023 Dec 07.
Artigo em Chinês | MEDLINE | ID: mdl-38186093

RESUMO

Objective: To investigate the molecular etiology of Perrault syndrome by analyzing the clinical phenotype and pathogenic gene variants of 2 male patients with bilateral severe sensorineural deafness. Methods: Two male patients with Perrault syndrome characterized by severe sensonrineual deafness adimitted to the First Affiliated Hospital of Zhengzhou University between February 2021 and March 2022 were selected, and the clinical phenotype and pathogenic gene variants of them and their family members were summarized. The whole exome sequencing technology was used to screen the pathogenic variants of the probands, and the candidate variants were determined by combining with clinical phenotype. The probands and their family members were verified by the Sanger sequencing method. Results: The whole exome sequencing results showed that the proband of family 1 had a compound heterozygous variants of the LARS2 (NM_015340.4) gene c.1565C>A (p.Thr522Asn) and c.1079T>C (p.Ile360Thr). The reported pathogenic variant c.1565C>A came from the mother, and the novel variant c.1079T>C came from the father. The second proband harbored compound heterozygous variants of HARS2 gene (NM_012208.4) c.1273C>T (p.Arg425Trp) and c.1403G>C (p.Gly468Ala), with the former from the proband's mother, the latter from the father. The c.1273C>T was novel and c.1403G>C was the reported pathogenic variant. All above variants were respectively classified as pathogenic, uncertain significance, uncertain significance and likely pathogenic based on the ACMG guidelines. Conclusion: This study expands the mutational spectrum of LARS2 and HARS2 genes, which highlights that genetic testing plays an important role in the early diagnosis of syndromic deafness.


Assuntos
Aminoacil-tRNA Sintetases , Surdez , Disgenesia Gonadal 46 XX , Perda Auditiva Neurossensorial , Humanos , Masculino , Testes Genéticos , Perda Auditiva Neurossensorial/genética
7.
Genes (Basel) ; 13(11)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36421788

RESUMO

The mitochondrial ribosome is critical to mitochondrial protein synthesis. Defects in both the large and small subunits of the mitochondrial ribosome can cause human disease, including, but not limited to, cardiomyopathy, hypoglycaemia, neurological dysfunction, sensorineural hearing loss and premature ovarian insufficiency (POI). POI is a common cause of infertility, characterised by elevated follicle-stimulating hormone and amenorrhea in women under the age of 40. Here we describe a patient with POI, sensorineural hearing loss and Hashimoto's disease. The co-occurrence of POI with sensorineural hearing loss indicates Perrault syndrome. Whole exome sequencing identified two compound heterozygous variants in mitochondrial ribosomal protein 7 (MRPS7), c.373A>T/p.(Lys125*) and c.536G>A/p.(Arg179His). Both novel variants are predicted to be pathogenic via in-silico algorithms. Variants in MRPS7 have been described only once in the literature and were identified in sisters, one of whom presented with congenital sensorineural hearing loss and POI, consistent with our patient phenotype. The other affected sister had a more severe disease course and died in early adolescence due to liver and renal failure before the reproductive phenotype was known. This second independent report validates that variants in MRPS7 are a cause of syndromic POI/Perrault syndrome. We present this case and review the current evidence supporting the integral role of the mitochondrial ribosome in supporting ovarian function.


Assuntos
Disgenesia Gonadal 46 XX , Perda Auditiva Neurossensorial , Insuficiência Ovariana Primária , Adolescente , Feminino , Humanos , Ribossomos Mitocondriais/patologia , Disgenesia Gonadal 46 XX/genética , Disgenesia Gonadal 46 XX/patologia , Insuficiência Ovariana Primária/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Proteínas Ribossômicas/genética , Proteínas Mitocondriais/genética
8.
Clin Genet ; 101(2): 221-232, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34750818

RESUMO

Homozygous variants in PPP2R3C have been reported to cause a syndromic 46,XY complete gonadal dysgenesis phenotype with extragonadal manifestations (GDRM, MIM# 618419) in patients from four unrelated families, whereas heterozygous variants have been linked to reduced fertility with teratozoospermia (SPGF36, MIM# 618420) in male carriers. We present eight patients from four unrelated families of Turkish and Indian descent with three different germline homozygous PPP2R3C variants including a novel in-frame duplication (c.639_647dupTTTCTACTC, p.Ser216_Tyr218dup). All patients exhibit recognizable facial dysmorphisms allowing gestalt diagnosis. In two 46,XX patients with hypergonadotropic hypogonadism and nonvisualized gonads, primary amenorrhea along with absence of secondary sexual characteristics and/or unique facial gestalt led to the diagnosis. 46,XY affected individuals displayed a spectrum of external genital phenotypes from ambiguous genitalia to complete female. We expand the spectrum of syndromic PPP2R3C-related XY gonadal dysgenesis to both XY and XX gonadal dysgenesis. Our findings supported neither ocular nor muscular involvement as major criteria of the syndrome. We also did not encounter infertility problems in the carriers. Since both XX and XY individuals were affected, we hypothesize that PPP2R3C is essential in the early signaling cascades controlling sex determination in humans.


Assuntos
Disgenesia Gonadal 46 XX/diagnóstico , Disgenesia Gonadal 46 XX/genética , Disgenesia Gonadal 46 XY/diagnóstico , Disgenesia Gonadal 46 XY/genética , Mutação , Fenótipo , Proteína Fosfatase 2/genética , Anormalidades Múltiplas/genética , Consanguinidade , Transtornos do Desenvolvimento Sexual/diagnóstico , Transtornos do Desenvolvimento Sexual/genética , Facies , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único
9.
Hum Genet ; 141(3-4): 805-819, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34338890

RESUMO

Hearing loss and impaired fertility are common human disorders each with multiple genetic causes. Sometimes deafness and impaired fertility, which are the hallmarks of Perrault syndrome, co-occur in a person. Perrault syndrome is inherited as an autosomal recessive disorder characterized by bilateral mild to severe childhood sensorineural hearing loss with variable age of onset in both sexes and ovarian dysfunction in females who have a 46, XX karyotype. Since the initial clinical description of Perrault syndrome 70 years ago, the phenotype of some subjects may additionally involve developmental delay, intellectual deficit and other neurological disabilities, which can vary in severity in part dependent upon the genetic variants and the gene involved. Here, we review the molecular genetics and clinical phenotype of Perrault syndrome and focus on supporting evidence for the eight genes (CLPP, ERAL1, GGPS1, HARS2, HSD17B4, LARS2, RMND1, TWNK) associated with Perrault syndrome. Variants of these eight genes only account for approximately half of the individuals with clinical features of Perrault syndrome where the molecular genetic base remains under investigation. Additional environmental etiologies and novel Perrault disease-associated genes remain to be identified to account for unresolved cases. We also report a new genetic variant of CLPP, computational structural insight about CLPP and single cell RNAseq data for eight reported Perrault syndrome genes suggesting a common cellular pathophysiology for this disorder. Some unanswered questions are raised to kindle future research about Perrault syndrome.


Assuntos
Aminoacil-tRNA Sintetases , Disgenesia Gonadal 46 XX , Perda Auditiva Neurossensorial , Aminoacil-tRNA Sintetases/genética , Proteínas de Ciclo Celular/genética , Criança , Feminino , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/genética , Humanos , Masculino , Mutação , Linhagem
10.
Eur J Endocrinol ; 186(1): 65-72, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34714774

RESUMO

CONTEXT: Homozygous and heterozygous variants in PPP2R3C are associated with syndromic 46,XY complete gonadal dysgenesis (Myo-Ectodermo-Gonadal Dysgenesis (MEGD) syndrome), and impaired spermatogenesis, respectively. This study expands the role of PPP2R3C in the aetiology of gonadal dysgenesis (GD). METHOD: We sequenced the PPP2R3C gene in four new patients from three unrelated families. The clinical, laboratory, and molecular characteristics were investigated. We have also determined the requirement for Ppp2r3c in mice (C57BL6/N) using CRISPR/Cas9 genome editing. RESULTS: A homozygous c.578T>C (p.L193S) PPP2R3C variant was identified in one 46,XX girl with primary gonadal insufficiency, two girls with 46,XY complete GD, and one undervirilised boy with 46,XY partial GD. The patients with complete GD had low gonadal and adrenal androgens, low anti-Müllerian hormone, and high follicle-stimulating hormone and luteinizing hormone concentrations. All patients manifested characteristic features of MEGD syndrome. Heterozygous Ppp2r3c knockout mice appeared overtly normal and fertile. Inspection of homozygous embryos at 14.5, 9.5, and 8.5 days post coitum(dpc) revealed evidence of dead embryos. We conclude that loss of function of Ppp2r3c is not compatible with viability in mice and results in embryonic death from 7.5 dpc or earlier. CONCLUSION: Our data indicate the essential roles for PPP2R3C in mouse and human development. Germline homozygous variants in human PPP2R3C are associated with distinctive syndromic GD of varying severity in both 46,XY and 46,XX individuals.


Assuntos
Disgenesia Gonadal 46 XX/genética , Disgenesia Gonadal 46 XY/genética , Proteína Fosfatase 2/genética , Substituição de Aminoácidos , Animais , Criança , Consanguinidade , Embrião de Mamíferos , Feminino , Disgenesia Gonadal 46 XX/patologia , Disgenesia Gonadal 46 XY/patologia , Homozigoto , Humanos , Leucina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Linhagem , Gravidez , Serina/genética
11.
Genet Test Mol Biomarkers ; 25(8): 528-539, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34406847

RESUMO

Background: Variants in the HARS2 gene have been reported to be associated with nonsyndromic hearing loss (HL) and Perrault syndrome (PS), a rare recessive disorder marked by bilateral sensorineural HL and ovarian dysgenesis. Given the low number of pathogenic variants described in the HARS2 gene, no genotype/phenotype correlations have been established between variants in this gene and the clinical data. Materials and Methods: Whole blood was collected from four members of a Lebanese family with PS. An affected woman was evaluated for HL by clinical examination and audiological tests. Primary ovarian failure was analyzed according to age of primary or secondary amenorrhea, follicle stimulating hormone levels, and pelvic ultrasound. The existence of neurological symptoms and other associated conditions was checked. To identify the causative variant, we used a custom HaloPlexHS panel for next-generation sequencing of the coding sequences of six genes implicated in this syndrome. Results: We identified a novel homozygous HARS2 missense variant (c.260G>A; p.Arg87His), which is only the second homozygous variant in the HARS2 gene identified to date worldwide. This variant is predicted to be deleterious by multiple in silico analysis tools, moreover the Arg87 amino acid nearly is invariant among eight species. Based on molecular modeling analysis, this variation is predicted to disturb the proper folding of HARS2, which may reduce its aminoacylation efficiency. Clinical data are compared with the other cases recorded in the literature to help gain further knowledge with regard to the phenotype. Conclusion: Our results provide strong evidence corroborating the etiological association of this mutation with the HARS2-PS phenotype. HARS2 variants need to be searched for in patients with early-onset bilateral sensorineural HL and ovarian dysfunction in women so as to guarantee accurate endocrinological surveillance and management to minimize secondary complications.


Assuntos
Aminoacil-tRNA Sintetases/genética , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/genética , Adulto , Aminoacil-tRNA Sintetases/metabolismo , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Disgenesia Gonadal 46 XX/metabolismo , Disgenesia Gonadal 46 XX/patologia , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Mutação de Sentido Incorreto , Linhagem , Fenótipo
13.
Genes (Basel) ; 11(9)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911714

RESUMO

RMND1 (required for meiotic nuclear division 1 homolog) pathogenic variants are known to cause combined oxidative phosphorylation deficiency (COXPD11), a severe multisystem disorder. In one patient, a homozygous RMND1 pathogenic variant, with an established role in COXPD11, was associated with a Perrault-like syndrome. We performed a thorough clinical investigation and applied a targeted multigene hearing loss panel to reveal the cause of hearing loss, ovarian dysfunction (two cardinal features of Perrault syndrome) and chronic kidney disease in two adult female siblings. Two compound heterozygous missense variants, c.583G>A (p.Gly195Arg) and c.818A>C (p.Tyr273Ser), not previously associated with disease, were identified in RMND1 in both patients, and their segregation with disease was confirmed in family members. The patients have no neurological or intellectual impairment, and nephrological evaluation predicts a benign course of kidney disease. Our study presents the mildest, so far reported, RMND1-related phenotype and delivers the first independent confirmation that RMND1 is causally involved in the development of Perrault syndrome with renal involvement. This highlights the importance of including RMND1 to the list of Perrault syndrome causative factors and provides new insight into the clinical manifestation of RMND1 deficiency.


Assuntos
Proteínas de Ciclo Celular/genética , Disgenesia Gonadal 46 XX/etiologia , Perda Auditiva Neurossensorial/etiologia , Nefropatias/fisiopatologia , Mutação , Adulto , Feminino , Disgenesia Gonadal 46 XX/patologia , Perda Auditiva Neurossensorial/patologia , Homozigoto , Humanos , Masculino , Linhagem , Fenótipo
14.
Mol Genet Genomic Med ; 8(10): e1445, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32767731

RESUMO

BACKGROUND: Perrault syndrome (PRLTS4; OMIM# 615300) is a rare autosomal recessive disorder and only a few cases have been reported worldwide. We report a Chinese female characterized by sensorineural hearing loss and premature ovarian insufficiency. METHODS: We evaluated audiological, endocrine, and ultrasound examinations and examined the genetic causes using whole-exome sequencing. We reviewed the literature to discuss the pathogenesis, genotype-phenotype correlation, treatment, and prevention of PRLTS4. RESULTS: Bioinformatic analysis revealed compound heterozygous mutations in the LARS2 gene, c.880G>A (p.Glu294Lys), and c.2108T>C (p.Ile703Thr) which is a novel missense mutation, co-segregated in this family. Taken together, the patient was clinically diagnosed as PRLTS4. The literature review showed that the phenotype for PRLTS4 varies widely, but the sensorineural hearing loss, increased gonadotropin levels, and amenorrhea occurred frequently. All reported mutations are highly conserved in mammals based on conservation analysis, and there is a mutation hotspot for PRLTS4. CONCLUSION: This study expanded the mutation spectrum of LARS2 and is the first report of PRLTS4 in a Chinese family. Genetic testing plays an important role in early diagnosis of syndromic deafness and clinical genetic evaluation is essential to guide prevention.


Assuntos
Aminoacil-tRNA Sintetases/genética , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/genética , Feminino , Disgenesia Gonadal 46 XX/patologia , Perda Auditiva Neurossensorial/patologia , Heterozigoto , Humanos , Mutação de Sentido Incorreto , Fenótipo , Adulto Jovem
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 37(7): 739-742, 2020 Jul 10.
Artigo em Chinês | MEDLINE | ID: mdl-32619254

RESUMO

OBJECTIVE: To explore the genetic etiology of two patients with Perrault syndrome (PRLTS) in a family. METHODS: Whole exome sequencing (WES) was carried out to screen potential variants within genomic DNA extracted from the proband. Suspected variants were validated by clinical data and results of Sanger sequencing. RESULTS: WES has identified two heterozygous variants of TWNK gene, namely c.1172G>A (p.Arg391His) and c.1844G>C (p.Gly615Ala). Sanger sequencing confirmed that the c.1172G>A (p.Arg391His), a known pathogenic variant, was derived from her father, while the c.1844G>C (p.Gly615Ala), a novel variant, was derived from her mother. Her brother, who was similarly affected, has carried the same compound heterozygous variants. CONCLUSION: The compound heterozygous variants c.1172G>A (p.Arg391His) and c.1844G>C (p.Gly615Ala) of the TWNK gene probably underlie PRLTS in the sib pair. The above results have facilitated genetic counseling and prenatal diagnosis for the affected family.


Assuntos
Disgenesia Gonadal 46 XX , Perda Auditiva Neurossensorial , Feminino , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/genética , Heterozigoto , Humanos , Masculino , Mutação , Linhagem , Gravidez
16.
Hum Genet ; 139(10): 1325-1343, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32399598

RESUMO

Perrault syndrome is a rare heterogeneous condition characterised by sensorineural hearing loss and premature ovarian insufficiency. Additional neuromuscular pathology is observed in some patients. There are six genes in which variants are known to cause Perrault syndrome; however, these explain only a minority of cases. We investigated the genetic cause of Perrault syndrome in seven affected individuals from five different families, successfully identifying the cause in four patients. This included previously reported and novel causative variants in known Perrault syndrome genes, CLPP and LARS2, involved in mitochondrial proteolysis and mitochondrial translation, respectively. For the first time, we show that pathogenic variants in PEX6 can present clinically as Perrault syndrome. PEX6 encodes a peroxisomal biogenesis factor, and we demonstrate evidence of peroxisomal dysfunction in patient serum. This study consolidates the clinical overlap between Perrault syndrome and peroxisomal disorders, and highlights the need to consider ovarian function in individuals with atypical/mild peroxisomal disorders. The remaining patients had variants in candidate genes such as TFAM, involved in mtDNA transcription, replication, and packaging, and GGPS1 involved in mevalonate/coenzyme Q10 biosynthesis and whose enzymatic product is required for mouse folliculogenesis. This genomic study highlights the diverse molecular landscape of this poorly understood syndrome.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Aminoacil-tRNA Sintetases/genética , Proteínas de Ligação a DNA/genética , Dimetilaliltranstransferase/genética , Endopeptidase Clp/genética , Farnesiltranstransferase/genética , Predisposição Genética para Doença , Geraniltranstransferase/genética , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/genética , Proteínas Mitocondriais/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Sequência de Bases , Criança , DNA Mitocondrial/genética , Feminino , Expressão Gênica , Disgenesia Gonadal 46 XX/diagnóstico , Disgenesia Gonadal 46 XX/patologia , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Ovário/metabolismo , Ovário/patologia , Linhagem , Peroxissomos/metabolismo , Peroxissomos/patologia
17.
BMC Med Genet ; 21(1): 109, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32423379

RESUMO

BACKGROUND: Perrault syndrome is a rare recessive and genetically heterogeneous disorder characterized by sensorineural hearing loss in males and females and gonadal dysgenesis in females. Mutations in seven different genes have been identified: HARS2, HSD17B4, CLLP, C10orf, ERAL1, TWNK and LARS2. To date, 19 variants have been reported in 18 individuals with LARS2-Perrault syndrome. CASE PRESENTATION: Here we describe the case of an 8-year-old girl with compound heterozygous missense mutations in the LARS2 gene. We identified two missense mutations [c.457A > C, p.(Asn153His) and c.1565C > A, p.(Thr522Asn)] and subsequent familial segregation showed that each parent had transmitted a mutation. CONCLUSIONS: These results have implications for genetic counseling and provide insight into the functional role of LARS2. This case highlights the importance of an early diagnosis. Systematic genetic screening of children with hearing loss allows the early identification of a Perrault syndrome in order to ensure specific endocrinological surveillance and management to prevent secondary complications. Clinical data are compared with the other cases reported in the literature.


Assuntos
Aminoacil-tRNA Sintetases/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Disgenesia Gonadal 46 XX/diagnóstico , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Mutação , Alelos , Substituição de Aminoácidos , Biomarcadores , Criança , Gerenciamento Clínico , Feminino , Estudos de Associação Genética/métodos , Genótipo , Disgenesia Gonadal 46 XX/terapia , Perda Auditiva Neurossensorial/terapia , Humanos , Fenótipo
18.
Hum Mutat ; 41(8): 1425-1434, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32442335

RESUMO

LARS2 variants are associated with Perrault syndrome, characterized by premature ovarian failure and hearing loss, and with an infantile lethal multisystem disorder: Hydrops, lactic acidosis, sideroblastic anemia (HLASA) in one individual. Recently we reported LARS2 deafness with (ovario) leukodystrophy. Here we describe five patients with a range of phenotypes, in whom we identified biallelic LARS2 variants: three patients with a HLASA-like phenotype, an individual with Perrault syndrome whose affected siblings also had leukodystrophy, and an individual with a reversible mitochondrial myopathy, lactic acidosis, and developmental delay. Three HLASA cases from two unrelated families were identified. All were males with genital anomalies. Two survived multisystem disease in the neonatal period; both have developmental delay and hearing loss. A 55-year old male with deafness has not displayed neurological symptoms while his female siblings with Perrault syndrome developed leukodystrophy and died in their 30s. Analysis of muscle from a child with a reversible myopathy showed reduced LARS2 and mitochondrial complex I levels, and an unusual form of degeneration. Analysis of recombinant LARS2 variant proteins showed they had reduced aminoacylation efficiency, with HLASA-associated variants having the most severe effect. A broad phenotypic spectrum should be considered in association with LARS2 variants.


Assuntos
Aminoacil-tRNA Sintetases/genética , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/genética , Miopatias Mitocondriais/genética , Acidose Láctica/genética , Adulto , Anemia Sideroblástica/genética , Edema/genética , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Fenótipo , Estrutura Terciária de Proteína
19.
BMC Med Genet ; 21(1): 68, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234020

RESUMO

BACKGROUND: The TWNK gene encodes the twinkle protein, which is a mitochondrial helicase for DNA replication. The dominant TWNK variants cause progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 3, while the recessive variants cause mitochondrial DNA depletion syndrome 7 and Perrault syndrome 5. Perrault syndrome is characterized by sensorineural hearing loss in both males and females and gonadal dysfunction in females. Patients with Perrault syndrome may present early-onset cerebellar ataxia, whereas middle-age-onset cerebellar ataxia caused by TWNK variants is rare. CASE PRESENTATION: A Japanese female born to consanguineous parents presented hearing loss at age 48, a staggering gait at age 53, and numbness in her distal extremities at age 57. Neurological examination revealed sensorineural hearing loss, cerebellar ataxia, decreased deep tendon reflexes, and sensory disturbance in the distal extremities. Laboratory tests showed no abnormal findings other than a moderate elevation of pyruvate concentration levels. Brain magnetic resonance imaging revealed mild cerebellar atrophy. Using exome sequencing, we identified a homozygous TWNK variant (NM_021830: c.1358G>A, p.R453Q). CONCLUSIONS: TWNK variants could cause middle-age-onset cerebellar ataxia. Screening for TWNK variants should be considered in cases of cerebellar ataxia associated with deafness and/or peripheral neuropathy, even if the onset is not early.


Assuntos
Ataxia Cerebelar/genética , DNA Helicases/genética , Proteínas Mitocondriais/genética , Ataxia Cerebelar/complicações , Ataxia Cerebelar/diagnóstico , Consanguinidade , Feminino , Marcha Atáxica/complicações , Marcha Atáxica/diagnóstico , Marcha Atáxica/genética , Disgenesia Gonadal 46 XX/diagnóstico , Disgenesia Gonadal 46 XX/genética , Perda Auditiva/complicações , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Homozigoto , Humanos , Japão , Transtornos de Início Tardio/diagnóstico , Transtornos de Início Tardio/genética , Pessoa de Meia-Idade , Mutação , Linhagem
20.
Ann Hum Genet ; 84(5): 417-422, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32281099

RESUMO

Perrault syndrome is a rare disorder characterized by ovarian dysgenesis, bilateral sensorineural hearing loss and associated with mutations in six mitochondrial proteins. Additional neurological features were also described. Herein, we report on a 27-year-old woman with Perrault syndrome (PS), moderate ataxia and axonal sensory-motor peripheral neuropathy in whom we identified compound heterozygous mutations in the TWNK gene (p.Val507Ile and the novel p.Phe248Ser variant). Fewer than 30 patients with PS have been reported worldwide. Neurological involvement is more frequently associated with mutations in TWNK and indicates possible genotype-phenotype correlations. TWNK mutations should be searched in patients with sensory ataxia, early onset bilateral sensorineural hearing loss, and ovarian dysfunction in women.


Assuntos
DNA Helicases/genética , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/genética , Proteínas Mitocondriais/genética , Adulto , Sequência de Aminoácidos , Análise Mutacional de DNA , Feminino , Humanos , Mutação , Mutação de Sentido Incorreto , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...